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An externally applied d.c. electric field is known to produce instability in a plane layer 
of dielectric liquid heated from above. The stationary linear instability of a unipolar 
charge injection equilibrium for which carrier mobility depends linearly on tempera- 
ture is investigated. It is found that the sign of the temperature gradient in relation to 
the emitting electrode determines whether or not such instability can occur, and that 
two types of instability can be distinguished: (i) a space charge modified BBnard mode; 
and (ii) a thermally modified space charge mode. It is shown that the critical voltage is 
highly dependent upon the absolute value of mobility and its variation across the 
layer. 

1. Introduction 
Considerable interest both experimental and theoretical has been shown in recent 

years in the augmentation of single phase heat transfer in dielectric liquids by employ- 
ing strong d.c. or a.c. electric fields. For reviews of such investigations see, for example, 
Bergles (1969), Turnbull (1969), Turnbull & Melcher (1969) and Lazarenko, Grosu & 
Bologa (1  975). Furthermore the possibility of utilizing electrohydrodynamic pheno- 
mena in laboratory models of geophysical processes has also been examined (Gross & 
Porter 1966; Smylie 1966; Gross 1967; Chandra & Smylie 1972). 

However, most studies of the effects of d.c. electric fields, and of electrophoresis in 
particular, assume that the charge distribution in the bulk of the liquid results pri- 
marily from thermally induced variations in the small electrical conductivity of the 
liquid. When the temperature gradient across the liquid is reduced to zero the then 
constant electrical conductivity does not give rise to a net space charge. The conduc- 
tion process in such a situation is then described by a ‘ conductivity’ model in which the 
current is linearly proportional to the electric field when convection and charge diffu- 
sion are neglected. 

On the other hand fundamental isothermal studies of the processes of electrical con- 
duction in organic liquids, both polar and non-polar, carried out by several investiga- 
tors (Atten & Gosse 1969; Schneider & Watson 1970; Watson, Schneider & Till 1970; 
Atten & Moreau 1972; Atten 1975) have concentrated on ‘mobility’ models of charge 
transport. This approach is supported by recent electrochemical arguments (Williams, 
Richardson & Poulter 1978; Williams & Richardson 1978) suggesting that electrical 
conduction in well-filtered liquid hydrocarbons (e.g. n-hexane, transformer oil, 
kerosene) is governed by the presence of neutral covalent electroactive impurities that 
undergo oxidation and reduction reactions a t  the electrodes. The charged impurities 
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are then assumed to drift down an electrical potential gradient with a velocity that is 
linearly proportional to the local electric field strength, the constant of proportionality 
being called the carrier or ionic mobility. 

This mobility approach allows us to consider the practical possibility of controlling 
the species of impurity, the intensity of injection and the position of the emitting 
electrode independently of any applied temperature gradient. Furthermore, there is 
the possibility of a charge-induced fluid dynamic instability even in an isothermal 
system. A conductivity model, however, does not permit consideration of such details 
nor does it admit the possibility of an isothermal instability. 

Perhaps the simplest configuration exhibiting the destabilizing effect of an electrical 
field on an otherwise thermally stable layer is the parallel plate system considered by 
Gross & Porter (1966) and Turnbull (1968b). Even though analyses have been attemp- 
ted by Turnbull (1968a), Roberts (1969), Takashima & Aldridge (1976) and Bradley 
(1978) their results still leave doubt as to the underlying mechanisms responsible for the 
observed fluid motions. Since we believe that impurities will have a profound effect on 
the behaviour of such an experimental system, we have chosen to investigate a model 
that is consistent with much better controlled electrochemical experiments. 

2. Equilibrium configuration 
Consider an incompressible dielectric liquid of density p, electrical permittivity E ,  

constant kinematic viscosity v and constant thermal diffusivity K contained between 
two perfectly conducting rigid horizontal planar electrodes of infinite extent that are 
distance d apart and maintained at  constant though different temperatures and 
electrical potentials. Suppose also that the liquid contains space charge of density Q 
with which is associated a charge carrier mobility K .  The electrode whose polarity has 
the same sign as this space charge is then regarded as the emitter, and defines the plane 
z = 0, so that in what follows variables evaluated a t  the emitter bear the suffix ‘ 0 ’, and 
the collecting electrode corresponds to the plane z = d.  

A dimensional analysis of the problem suggests that current density, applied 
voltage and thermal effects (i.e. buoyancy forces, variations in dielectric constant and 
carrier mobility) as well as the thermomechanical and electrical properties of the 
liquid be characterized by a set of non-dimensional parameters. It is convenient to 
choose therefore 

(2.1) I C = Qod2/co 40, 

P = V / K ,  A = Pp0K;/€,  

T’ = 80 +O/PO VKO, 
R = apgd4/vtc, c1 = e1pd, K ,  = k,pd, 

respectively,? where rjo, p, a, g, el and k ,  are the applied potential difference, average 
temperature gradient, liquid thermal expansion coefficient, the acceleration due to 
gravity and the temperature coefficients of electrical permittivity and of charge 
carrier mobility. R is the Rayleigh number, P the Prandtl number, A the ‘mobility 
parameter’ for the liquid and C a measure of the magnitude of injected charge. 

Once values have been assigned to these parameters the fluid velocity, temperature 
and electrical potential fields are determined by the governing electrohydrodynamic 

t The quantity c,, is not to  be confused with the permittivity of free space. 
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equations in which magnetic effects have been neglected. We then have the following 
reduced field equations: 

V . u  = 0, p(a/at+u.V)u = -Vp+pgi,+pvV2u+F, (2.2)) (2.3) 

(a/at+u.V)T = K V ~ T ,  E = -V#, (2.41, (2.5) 

V . D  = Q, 0.j = -aQ/at; (2.6), (2.7) 

where u denotes fluid velocity, p kinetic pressure, F the electrical body force per unit 
volume, T temperature, E electric field, q5 electrical potential, D electric displacement 
vector and j current density. Viscous and electrical dissipation have been neglected in 
the energy equation (2.4). In  addition we require constitutive equations in order to 
specify the particular model under consideration. Having already assumed the liquid 
to be Newtonian [cf. (2.3)] we further postulate that 

D = sE, j = Q ( K E + u ) ,  (2.8)) (2.9) 

(2.10) F = QE - $E2Vs + ~V(pE2(&/ap),}, 

so that the liquid is a linear isotropic dielectric containing a single charged species and 
charge diffusion phenomena are negligible. Finally the equations of state for density, 
permittivity and mobility are assumed to take the form 

P = Po[$ - 4 T  - !cO)l, 
6 = eo[l + e,(T - To)], 

K = Ko[l+k,(T-To)], 

(2.11) 

(2.12) 

(2.13) 

where To is a reference temperature defined as that of the emitter. The temperature 
dependence of mobility as measured isothermally is usually expressed by the Arrhen- 
ius-type equation 

K(T)=K,exp -W --- (2.14) 

where wk is the ratio of an activation energy to the Boltzmann constant (cf. Gallagher 
1975, chapter 1) ,  so that (2.13) is equivalent to a Taylor expansion of (2.14) to first 
order in T - To. A comparison of these equations with experimental and theoretical 
data for non-polar organic liquids near room temperature suggests that k, N 10-2 
(Gray & Lewis 1969; Adamczewski & Calderwood 1975) whereas el N - (Kaye & 
Laby 1973). 

In  general kinematic viscosity v and thermal diffusivity K will vary with temperature 
thus requiring two further equations of state. However, in this analysis we neglect such 
variations in order to highlight the effects of buoyancy and the temperaturedependence 
of mobility. 

The above system of equations (2.4)-(2.13) possesses a steady one-dimensional 
hydrostatic (u = 0) equilibrium j = [O,O,j(z)] ,  E = [0,  0, E(z)]  given by 

T = Tot/3z,  E = eo(l+e,,8z), (2.15)) (2.16) 

(2.17), (2.18) 

[ k G  a 1 9  

K = Ko(1+kl/3z), j = j o  = KoQoEo = K(z)&(z)E(z) ,  

(2.19) 

(2.20) 
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d 
and = /+ E(z‘)dz’, 

J Z  

where H(z )  is defined by 

2: i l n ( l + y )  for jell Q J k l J ,  
K1 

(2.21) 

(2.22 a) 

(2.22 b )  

satisfying boundary conditions on electrical potential and temperature of the form 

w-9 = do, #(d) = 0, T(O) = To, T (d )  = T,+Pd, (2.23) 
provided that 

(2.24) 

However for a complete specification we require a further condition relating Qo and 
E,. This takes the form of a postulated injection law Qo = f(E,) describing the manner 
in which charge enters the liquid at the emitter. I n  the absence of a well-established 
electrochemical theory of charge injection a t  a solid/liquid interface we choose for 
simplicity an ‘autonomous’ injection following Atten & Moreau (1972) who argue 
that it is the least stabilizing of injection laws. I n  practice, of course, charge is removed 
from the liquid a t  the collector, a process which should in principle be described by an 
ejection law. That no such law is required in the present analysis results from neglecting 
charge diffusion. The equilibrium defined by (2.15)-(2.24) is then a mainstream 
solution of a boundary-layer problem, the matching exponential charge diffusion 
boundary layer being located a t  the collector (cf. Richardson & Poulter 1976). The 
limiting case of strong injection, known as that of space-charge-limited currents 
(SCLC) is defined by the limit Qo-+m [or C+co; cf. (2.1)] implying that E, = 0 [cf. 
(2.1 S)]. This means that the system is passing the largest current possible for given Qo 
and p. Again in practice charge diffusion will prevent Qo from becoming infinite. 
However, further boundary-layer analysis (cf. Richardson 1978) suggests that  the 
equilibrium (2.15)-(2.24) must in this case be matched to  an algebraic charge diffusion 
boundary layer a t  the emitter by using t’he condition E, = 0 on the mainstream 
solution. Hence for the case of infinite C we replace the autonomous injection law by 
E, = 0. 

It is clear that  there are four distinct cases of this equilibrium depending upon the 
position of the emitting electrode and its temperature relative to  that of the collector 
(see figure 1) .  The possibility of these equilibria being dynamically unstable is sugges- 
ted by an energy argument (cf. Gross 1969) implicitly neglecting the effects of buoy- 
ancy, viscosity, thermal diffusion and space charge modification of the electric field. 
A necessary condition for stationary instability is that  

Vq5.VQ > 0, (2.25) 

somewhere within the liquid. This is equivalent, on neglecting the temperature- 
induced variations of E ,  to  

K~ + C- #o [1+ 2 In (1  + K~ z /d ) ]  > 0. (2.26) 
EOd 
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FIGURE 1. Equilibrium configurations: (a) cold emitter p > 0, heating from above R < 0; 
( b )  hot emitter p < 0, heating from below R 0; ( c )  hot emitter ,8 < 0, hertt,ing from above 
R < 0; ( d )  cold emitter /? > 0, heating from below R > 0. 

Since C and Eo/$o are intrinsically positive, this implies that ( a )  if K~ > 0 (i.e. the cold 
emitter case) the system is potentially unstable, and (b)  if K~ < 0 (t,he hot emitter 
case) the system is not susceptible to stationary instability when 

C($OIEOd) + K1 < 0. (2.27) 

We thus expect a system with a cold emitter to be generally more unstable than one 
with a hot emitter in otherwise similar circumstances; thus, for instance, configuration 
(a) in figure 1 should be more unstable than ( c )  for the same values of C and 1/31. 

3. Linear stability analysis 
3.1. Perturbation equations and boundary conditions 

Let u = (ux,uu,uz), 6T  and 6$ be perturbations, whose squares and products are 
negligibfe, in the velocity, temperature and electrical potential respectively of the 
one-dimensional equilibrium state of 5 2. If these perturbations are analysed into 

(3.1) 
normal modes so that 

u, = V ( z )  exp [ i (k ,x  + k, y )  + st],  

6T = 8(z)exp[i(k,x+k,y)+st], (3.2) 

64 = F ( z ) e x p [ i ( k z x + k k , y ) + s t ] ,  (3.3) 

where k = [kx ,  kJ is a two-dimensional vector wavenumber of magnitude k and s is the 
growth rate, which can be complex, and we introduce non-dimensional variables 

2 
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the resulting equations governing linear perturbations reduce to 

W. J. Wmraker and A .  T .  Richardson 

p a -  P- ~ 8 )  e = 7, (3.5) 

(3.6) 

(D2 - k2)  (D2 - k2 - 8 )  V = k2[ - RO + el ATfED(EO)] + k2elATf(EDE) 8 

+ k2AT2, C(DQ) F - PAT: eE(D2 - k2)  F ,  

C(DQ) V = P s ~ ( D ~ - ~ ~ ) . F + A T ~ C K Q ( D ’ - ~ ~ ) F  
+AT,D[eEK(D2-k2) F ]  + AT,C[D(KQ)JDF 
+el PsDP +el AT8 D[KEDF] -el AT,D[KED(EO)] 

(3.7) 
Here D denotes differentiation with respect to z, asterisks have been omitted, and we 
have made the Boussinesq approximation for density variations. The Rayleigh 
number R is positive (negative) for heating from below (above) provided that the sign 
of g is taken to be positive (negative) when the upper (lower) electrode is the emitter. 

The three ordinary differential equations (3.5)-( 3.7), whose coefficients are functions 
of z, constitute a ninth-order eigenvalue problem upon specification of nine boundary 
conditions. At the rigid perfectly conducting electrode/liquid interfaces clearly the 
no-slip conditions and fixed temperature and potential criteria must hold, so that 

- K1 AT, CD[QEB] -el P8D(m) .  

V =  D V =  O = F = 0 a t  z = 0,i. (3.8) 

D2E”-ClDF=0 at  z = O ,  (3.9) 

The ninth condition is obtained from an injection law, and reduces to 

where 17, = (d/eo)  (df /dE,) .  In  the case of autonomous injection we choose C, = 0 
giving D2F = 0 whereas in the case of space-charge-limited currents we let C1+m 
giving DF = 0 [cf. Atten & Moreau 19721. 

In  the isothermal limit el = K ,  = R = 0 (3.6) and (3.7) reduce after some manipula- 
tion to the seventh-order system of Atten & Moreau (1972) as expected. In  the case of a 
perfectly insulating liquid (C = 0) it is possible from (3.5)-(3.7), after assuming 
lell 4 1 and that O and DO are order one quantities, to recover the equations of the 
first model considered by Roberts (1969), which contains the classical Benard problem 
as a special case. For the non-polar liquids under consideration we have \el I < I E ,  I and 
so restrict our attention to the special case el = 0. As a first attempt we further restrict 
our analysis to stationary instability for which the marginal stability equations are 

(D2--2)e = V ,  (3.10) 

[Y+K1q2(z) ]  V = K ~ A T , E ~ ~ ~ ( Z ) [ K ( Z )  DO-K,O] 

-AT, K(z)  1 - f F  Y (3.12) + y K ( z )  q2(z) D[K(z)  q2(z) (D2 - k2)  F ]  

where y = C/E,,, R(2) = 1 + K I Z ,  (3.13), (3.14) 

[ 1 + 27 In (1 + K~ z ) / K ~ ] )  for K~ i 0, (3.15~) 

(1 + 2yz)9 for K~ = 0, (3.15b) 
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and together with boundary conditions (3.8) and (3.9) define the linear instability 
problem whose solution is to be investigated numerically. Once specific values have 
been assigned to the four parameters A ,  R, C and K ~ ,  thus defining a particular physical 
situation, solving the eigenvalue problem for the voltage parameter T, for a range of 
values of wavenumber k produces marginal stability curves in the k, T, plane corres- 
ponding to the various modes of instability. We first however consider certain limiting 
cases. 

3.2. Small parameter approximations 
In this section we consider the equations resulting from (3.10)-(3.15) on taking the 
limits C+ 0 and K~ -+ 0. Each coefficient is expanded in terms of C and K~ and on 
further assuming that DV N V ,  etc., only the leading-order terms are retained. We 
find that y N C, E, N 1 and K(z)  N_ q(z)  N 1 and, on defining G(z) = (D2 - k2) P(z), the 
system factorizes into second- and seventh-order differential equations. Eliminating V 
and G from the latter produces 

D[(D2 - k2)3 + k2R] 8- k 2 q  c(c + K1) (D2 - k2)  8 + k 2 ~ ,  AT: CD8 = 0, (3.16) 

which is subject to the four no-slip conditions, the two fixed temperature conditions 
and the constraint G(0)  = 0. 

If we now postulate that K~ = K~ C" ( m  2 0) as C -+ 0 and write 
co 

T, = Cp C TnCn, 
n= 0 

a leading-order analysis shows that: (i) for 0 < m 6 3, p = - $(m + 1)  and we obtain 

D[(D2 - k2)' + k2R*] 8 = 0, (3.17) 

where R* = R + lim K~ AT: C; 
c+o 

(ii) for m = 3, ,u = - 2 and we obtain 

D[(D2 - k2)' + k2R] 8 - k2q(D2 - kz)  8 + k 2 ~ ,  AT,2DO = 0, (3.18) 

where TI = limT,C2; 
c+o 

and (iii) for m > 3, p = - 2 we obtain 

D[(D2-k2)3+k2R]8-k21;(D2-k2)8 = 0, (3.19) 

where again = lim T, C2. 
c-+o 

Applying the boundary condition G ( 0 )  = 0 after a single integration of (3.17) leads 
to the classical BBnard equation with R replaced by R*. The solution for the most 
unstable mode is therefore 

R,* N 1708 and kc 21 3.117. (3.20) 

If for example K~ > 0 and R = - 20 we then have 

T, 2: (1728/~ ,  AC)i ,  (3.21) 

whereas for K~ and R both negative we have no solution, i.e. no stationary instability. 
This special case (i) we term the space charge modified BBnard regime. On remembering 
that (D2-k2)  8 = V [cf. (3.10)], we note that (3.19) is clearly equivalent to the fifth- 
order small injection equations of Atten & Moreau (1972) with the addition of the 

2-2 
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Thermall) 

according to (2.27) 

nodified 

Space charge modified 
Benard regime Case ( i )  

I 

FIQURE 2. Schematic representation oithe limiting small C regimes in the K ~ ,  C plane. The dashed 
line denotes the smaller extent of case (iii) as A increases. 

buoyancy term k2R DO. This special case (iii) we term the thermally modified space 
charge regime. The regions in the K ~ ,  C plane where these cases apply are illustrated in 
figure 2. Notice that the larger the value of A the smaller the region enclosed by 
branches OD, OD' (see $4.2).  

3.3. Space-charge-limited currents 

In  the limiting case C-tco we see from (2.18) to (2.24) that the space-charge-limited 
current equilibrium has a vanishing electric field E,  and an associated singularity in 
space charge density Q, at the emitter. An analysis of the perturbation equations 
(3.1 1) and (3.12) in this limit indicates that the perturbation6Q in space charge density 
in the vicinity of z = 0 behaves like z-* in the same way as the equilibrium Q. In  order 
to improve the convergence of the numerical method of solution we therefore filter out 
from the governing equations the singular behaviour of$& by introducing a function 
Fl(z), related to F(z)  (cf. Atten & Moreau 1972) and defined by 

F ( 4  = Fl(4 - [W/W)I~Fl(Q 

where 
ln(1 + K ~ z ) / K ~  for icl + 0, 

z for K~ = 0. 
h(z) = 

In  terms of V ,  O and F (3.11) and (3.12) become 

(0%- k2)'V = - k2R0 

(3.22) 

(3.23 a) 

(3.236) 

(3.24) 
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2K 
[ 1 + 2 ~ ,  h(z)] V = -$ [h(z)]~AT,[K(z)  DO - K, O] 

where B is a constant depending on K, given by 

B ( K ~ )  = lo1 [h(z)]4 dz.  (3.26) 

The boundary conditions on velocity and temperature remain unchanged, and those 
on potential at the emitter are satisfied by the function F,. However, since the defini- 
tion of Fl(z) [cf. (3.22)] implies P(1) = 0 we must replace this latter condition by an 
implicit one obtained by differentiating (3.25) once and applying it at z = 0. We then 
have the nine constraints 

V = DV = 8 = 0 at  z = 0 , l ;  F, = DF, = D2Fl = 0 a t  z = 0. (3.27) 

4. Numerical analysis 
4.1. Method of solution 

The two ordinary differential eigenvalue problems (3.8)-(3.12) and (3.10), (3.24)- 
(3.27) were solved numerically on a CDC 7600 machine using a Chebyshev collocation 
technique providing the critical values of T, and its associated eigenfunctions V(z), 
O ( z )  and F(z)  for the lowest mode of instability. Each variable is represented by a finite 
series of Chebyshev polynomials of the same degree N ,  e.g. 

N 

n= 0 
V ( z )  = c &Tn(z), 

so that both systems of equations together with their associated boundary conditions 
are equivalent to linear algebraic eigenvalue problems whose solutions provide the 
Chebyshev coefficients. After applying the differential equations at collocation points 
and appropriately adding in the equations obtained from the boundary conditions we 
have A , V + B , 8  = 0, A , V + B , 8 + T : C 2 F =  0 ,  

A3V+T,B38+T,C3F = 0, (4.3) 
where Ai, Bi ( i  = 1 ,2 ,3 )  and Ci ( i  = 2 ,3 )  are ( N +  1 )  x ( N +  1)  matrices andV, 8 and F 
are vectors containing the respective Chebyshev coefficients. By construction mat- 
rices A,, B ,  and C ,  possess inverses so that eliminating 8 and F from the system 
(4.1 )-( 4.3) gives 

(4.4) 

where A, = T i 1 ,  M ,  = - A,,( B ,  BTlA, + C ,  CglA,), M ,  = A;lC, CT'B, BilA, and I 
is the ( N  + 1) x ( N  + 1)  identity matrix. 

The 2N + 2 eigenvalues A, of (4.4) are identical to those of the linear algebraic system 

( M - A , I ) X  = 0,  (4.5) 

where ' I  and X = [&I. 0 
M ' [ - M 2  - M ,  
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For any fixed wavenumber k the lowest positive real value of T, ( = h;l) then corres- 
ponds to the fundamental mode of instability. On constructing the velocity eigen- 
function V(z)  from the first N +  1 elements of the corresponding eigenvector X, we 
find that this mode has a single-cell character. The most unstable mode is then obtained 
by using a quadratic minimization routine to determine the minimum value of T, as a 
function of k.  

In  most cases the solution'was computed using a degree of Chebyshev polynomial 
representation N = 25 and the process repeated for N = 40. It was found that the 
number of significant figures to which corresponding values of T, agreed was dependent 
primarily on the value of C, but to a lesser extent on K, and A .  Typically for values of 
C 5 2 agreement was to seven figures, for C = 10 i t  was only to three figures, whereas 
for C = co five or six figure agreement was achieved. As a further check on the validity 
of this numerical technique the solution to the isothermal case R = K, = 0 was found 
to be consistent with the results of Atten & Moreau (1972). 

The present method of solution of the thermal problem involved solving three 
equations in three variables. However, it  was found that eliminating one of these 
variables to reduce the amount of algebraic manipulation in the programme resulted 
in very poor convergence for large C. This was accredited to the application of higher- 
order boundary conditions. 

4.2. Numerical results 
Applying a weakly stabilizing temperature difference of 1 "C across a layer of chloro- 
benzene or n-hexane of depth 0.5 mm corresponds to a Rayleigh number R N - 20. 
Using measured values of ion mobility leads to values of the mobility parameter A of 
0.2 for chlorobenzene (KO = 4.5 x 10-8m2/V s; cf. Lacroix, Atten & Hopfinger 1975) 
and 1.5 for n-hexane (KO = 10-7 m2/V s; cf. Gallagher 1975). Most numerical results 
were obtained by choosing R = - 20, A = 0.2 and 20 and K~ lying in the ranges 
< K, < 1 and -0.1 < K~ < -10-4. 

Considering f i s t  the case of a cold emitter (K ,  > 0) we see from figure 3 that the 
critical voltage parameter T, decreases with increasing K,( = k,Pd = k,  AT),  i.e. with 
increased temperature difference. Furthermore this reduction is greater for (i) smaller 
values of injection strength C: thus for the case A = 20, C = Tc is reduced from 
29404.27 (K ,  = to 432.2923 (K ,  = 1-0) whereas for C = co, T, is only reduced from 
160.3389 (K ,  = to 17.917 ( K ~  = 1.0); and (ii) for larger values of the mobility 
parameter A whenever Cis large: thus whenC = co, A = 20, T, is reduced from 160.3389 
(K,  = 10-4) to 17.917 (K ,  = 1.0) whereas for A = 0.2 the reduction is from 162.180 
(K,  = 10-4) to 106.451 (K, = 1.0). In addition we notice that in accordance with (3.21) 
for the space charge modified BQnard regime the curves for small C have gradient 
approximately - 0.5 (cf. In 2'' N - In K, + constant). From tables 1 and 2 it  is clear 
that the product K~ A in the cases computed here is important in determining the nature 
of the solution not only for small C [cf. (3.21)] but also for larger values. 

From figure 4 it  is apparent that in general the critical wavenumber kc decreases 
with increasing K,. It also increases as C becomes larger, though for moderate values of 
K, this latter effect is more marked the smaller the value of A .  Alternatively we can say 
that the larger the value of A the more extensive is the region of the K,, C plane essen- 
tially characterized by the space charge modified BQnard instability. This is also 
evident from plots of Tc against C (figure 5 )  for various values of K,. The curves for 
small C and K, 0 have slope - 0.5 [cf. (3.21)], whereas the limiting curve K~ = 0 (for 
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small C and any value of A )  has a slope tending to - 2. This corresponds to the ther- 
mally modified space charge regime [cf. (3.19)] where, for R = - 20, 

lim T, C2 = 223.0984 and kc = 4.591, 
(7-0 

compared with the isothermal results of Atten & Moreau (1972) 

limTcC2 = 220.7621 and k, = 4.5715. 
c+o 

We next consider the case of a hot emitter ( K ~  < 0) and present some numerical 
results in table 3. For small values of C the space charge modified BBnard equation 
[cf. (3.17)] implies, for stationary instability to be possible, that 

R -k K~ AT: C 2 1708. (4.7) 
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FIQURE 4. Variation of critical waverlumber k, with K~ for R = - 20 and C = 0.001, 0.1, 1, ~ 0 .  

The solid lines correspond to A = 20 and the dashed lines to A = 0-2. 

This suggests that for negative values of K1, since A and C are inherently positive, the 
electric field exerts a stabilizing influence in that it reduces the effective Rayleigh 
number. Indeed for R 5 1708 no stationary instability is possible. As before the para- 
meter X T ~  A is important in characterizing the solution even for large values of C. Thus 
for C = 00 the solution for A = 0.2, K~ = - is T, = 164.2095 and k, = 5.189, 
whereas for A = 20, K~ = - 10-4 we have T, = 164.1482 and k, = 5.190. As I K ~ A ~  
increases the critical voltage parameter T, and corresponding wavenumber kc increase. 
The convergence of the Chebyshev series approximations becomes progressively 
poorer suggesting the approach to a stability boundary (cf. figure 2). Where, however, 
a solution has been obtained the character of the instability is of a thermally modified 
space charge kind. 

Finally in the case of space-charge-limited currents (C = 00) we find that as R 
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FIGURE 5. Variation of critical voltage parameter T, with injection strength C for R = - 20. 
(a) A = 0.2, K~ = 0, 0.01, 0.1, 1 (dashed line); (b )  A = 20, K~ = 0, 0.001, 0.01,0-1, 1 (solid line). 

K1 = 0 K1 = - 10-4 K1 = - 10-3 K = - 10-8 K = - 10-1 

C = l  516.2250 516*9121 523.2660 612-3832 - 
(4.700) (4.702) (4.724) (5.033) - 

C=C9 162.199 162.2 187 162.3949 164-2095 190-41 
(5.164) (5.164) (5.167) (5.189) (5.539) 

C = l  516.2250 609.153 - - - 
(4.700) (5.027) - - - 

C=CQ 162.199 164-1482 187.51 2 - - 
(5.164) (5.190) (5.511) - - 

A = 0.2 

A = 20 

TABLE 3. Values of critical voltage parameter To and associated wavenumber k, for K~ d 0, 
R = - 20, A = 0.2 and 20 in the cases C = 1 and C = a. A line indicates that  no sdution was 
found. 
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~ 

R = 20 R = - 2 0  R = - 2 ~ 1 0 8  R = - 2 ~ 1 ( r  

K1 = 0 169.3003 162.199 276-2266 668-623 
(6.1 13) (5.164) (7-282) (13.618) 

K1 = 0.1 
A = 0.2 144.604 146.964 242-710 690.06 

A = 20 41.841 42.382 64.112 N O  

TABLE 4. Values of the critical voltage parameter T, and associated wavenumber k, for different 
values of the Rayleigh number R in the cme of apace-charge-limited current. Note that the 
results do not depend on A when K~ = 0. 

(4.937) (4.982) (6.802) (12.721) 

(3.808) (3.824) (4.666) solution 

becomes more negative (cf. table 4), corresponding to a more strongly stable thermal 
stratification, the critical values T, and Ic, both increase. They also increase as the 
mobility parameter A is reduced. 

5. Concluding remarks 
Perhaps the most striking feature of the above analysis is that it demonstrates the 

importance of the sign of the temperature gradient in relation to the emitting electrode. 
It suggests that a system with an emitter cooler than the collector is more susceptible 
to stationary instability than one with the opposite temperature gradient. Indeed, in 
the hot emitter case the electric field may for sufficiently large A 1 fail to destabilize 
an otherwise thermally stable layer, although oscillatory instabilities have not been 
ruled out. This may exert a considerable influence on the practical design of a heat 
exchanger using electrohydrodynamic principles. 

The second feature of note is the effect of the mobility variation in the two types of 
instability according to the values of injection strength C, mobility variation para- 
meter K~ and mobility parameter A .  In  the BBnard type mode the electric field, depend- 
ing upon the sign of K l ,  acts to increase or reduce the effective Rayleighnumber, i.e. it 
tends to counteract or reinforce gravity. In  the other, which is essentially a space 
charge mode of the Atten & Moreau type modified by buoyancy, its effect is of second- 
ary importance; this latter mode will be dominant in the case of small I K~ A J and large 
C. When C < 1 we notice that the dependence of the critical voltage parameter T, upon 
C is quite different for these two modes of instability. 

It is evident that the magnitude of K~ A plays a central role in characterizing the 
precise form of the instability. This may be exemplified by an argument analogous to 
that used by Felici (1971) with reference to BBnard convection (see figure 6). Ignoring 
for the moment buoyancy effects and the positive feedback mechanism involving 
circulations and gradients in space charge, we consider the effect of thermally induced 
variations in mobility across the layer. The constancy of current [cf. (2.18)] implies 
that as mobility K varies the electrical body force QE varies reciprocally. An imbalance 
in the body force per unit volume A(&E) 2~ j o ~ , / K 0  is then established between 
emitter and collector regions, which must, in steady convection, be balanced by viscous 
drag w po vU/d2 ,  where U is a characteristic velocity, so that U N j, K~ d2/po vK0. The 
cool rising columns of liquid will gain heat by conduction from the adjacent falling 
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FIGURE 6. Thermally induced electroconvection: the cold liquid rises owing to the electrical body 
force imbalance and after gaining heat falls back having lost its electrical buoyancy. The process 
is limited by heat conduction between falling and rising liquid columns. 

columns so that the imbalance in body force driving the motion is reduced. Growth of 
liquid circulations will be limited when the heat conducted into a single cell N hpd2, 
where h is the thermal conductivity, becomes comparable with the convective heat 
flux - po cp Bud3, c p  being the specific heat at  constant pressure. This balance condition 
gives U N Alp, cp d = K / d  and combined with the balance of forces implies 

j, K1 ds/po V K K ,  N 1. 

K1 d2&, $,/Po VK = K1 AT: C N 1, 

(5.1) 

In  the case of small injection for which E,  N #,/a so that j ,  N KO Q0 #,/a condition 
(5.1) becomes 

(5 .2)  

[cf. (3.17) and the definition of R*], whereas for strong injection j ,  - eoK,# i /d3  so 
that (5.1) becomes 

K~ eo @/p0 VK = K~ AT," N 1.  (5.3) 

Whilst this is not a rigorous analysis it nevertheless suggests the importance of the 
parameter K~ A .  In  the case of negative K ~ ,  i.e. a hot emitting electrode, the imbalance 
in the electrical body force is reversed, thus tending to stabilize the system in a manner 
similar to that of the body force in a B6nard layer heated from above. This is con- 
sistent with the energy argument leading to (2.27), once again highlighting the 
distinction between the cases of hot and cold emitters. 

The applicability of the above stability analysis to the experiments of Gross & 
Porter (1966) and Gross (1967) on a layer of transformer oil of depth 1 mm, across which 
was applied a stabilizing temperature difference of 12 "C, depends critically on the 
value assumed for ion mobility within the oil. Taking the values R 2: - 20, 1 ~ ~ 1  2: 0.25 
and assuming that the threshold voltage for instability was 180 V we find that (i) if 
KO 2: 3 x 10-10 m2/V s then A 2: 2 x and the experimental value of T, 2: 340. The 
present model provides a similar value for T, on choosing C 2: 2 regardless of the 
sign of K ~ .  This would imply that the thermal effects are of little significance and 
the instability is essentially of the space charge type; (ii) if KO 2: 10-9 m2/V s then 
A 2: 2 x 10-2 and the experimental value of T, 100. Then even for K~ > 0 and 
assuming SCLC conditions the model does not appear to account for the instability. 
However, the degree to which the test liquid was filtered would have affected any 
experimental results. Nevertheless, the effect of temperature dependent mobility 
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should be better exhibited if the test liquid is chosen to have a higher value of A 
(e.g. n-hexane). 

Finally we note that whilst we have isolated thermally induced variations of the 
charge carrier mobility we have ignored variations of kinematic viscosity, thermal 
conductivity and electrical permittivity, the effects of charge diffusion and the 
underlying electrochemica1 electrode reactions. We have also only considered unipolar 
injection. Undoubtedly many situations arise for which a bipolar injection model 
including recombination and dissociation effects would be more appropriate. Once 
again neither the possibility of overstability nor the effects of nonlinearities have been 
considered. 

The above work was supported by a grant from the Science Research Council, 
grant no. GR/A01131. 
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